
Precisely Characterizing Security Impact in a Flood
of Patches via Symbolic Rule Comparison

Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu
University of Minnesota, Twin Cities

{wu000273, he000242}@umn.edu, mccamant@cs.umn.edu, kjlu@umn.edu

Abstract—A bug is a vulnerability if it has security impacts
when triggered. Determining the security impacts of a bug is
important to both defenders and attackers. Maintainers of large
software systems are bombarded with numerous bug reports and
proposed patches, with missing or unreliable information about
their impact. Determining which few bugs are vulnerabilities is
difficult, and bugs that a maintainer believes do not have security
impact will be de-prioritized or even ignored. On the other hand,
a public report of a bug with a security impact is a powerful first
step towards exploitation. Adversaries may exploit such bugs to
launch devastating attacks if defenders do not fix them promptly.
Common practice is for maintainers to assess the security impacts
of bugs manually, but the scaling and reliability challenges of
manual analysis lead to missed vulnerabilities.

We propose an automated approach, SID, to determine the
security impacts for a bug given its patch, so that maintainers
can effectively prioritize applying the patch to the affected
programs. The insight behind SID is that both the effect of a
patch (either submitted or applied) and security-rule violations
(e.g., out-of-bound access) can be modeled as constraints that can
be automatically solved. SID incorporates rule comparison, using
under-constrained symbolic execution of a patch to determine
the security impacts of an un-applied patch. SID can further
automatically classify vulnerabilities based on their security
impacts. We have implemented SID and applied it to bug patches
of the Linux kernel and matching CVE-assigned vulnerabilities
to evaluate its precision and recall. We optimized SID to reduce
false positives, and our evaluation shows that, from 54K recent
valid commit patches, SID detected 227 security bugs with at
least 243 security impacts at a 97% precision rate. Critically,
197 of them were not reported as vulnerabilities before, leading
to delayed or ignored patching in derivative programs. Even
worse, 21 of them are still unpatched in the latest Android
kernel. Once exploited, they can cause critical security impacts
on Android devices. The evaluation results confirm that SID’s
approach is effective and precise in automatically determining
security impacts for a massive stream of bug patches.

I. INTRODUCTION

Major system programs receive an overwhelming number of
bug reports, and dealing with these bug reports is much of the
life-cycle cost of the software. For instance, Mozilla developers
dealt with almost 300 bugs per day in 2005 [2], and a similar
rate of new bugs are received in the Mozilla bug database [36]
today. The Linux kernel also experiences this problem. As of

August 2019, more than 855K patches have been applied by
kernel maintainers [49], and the actual number of submissions
examined is even higher because many proposed patches are
not applied, or require several rounds of revision. Linux also
receives many proposed patches from external contributors.
Sometimes, these patches fix important bugs, while other
patches fix general bugs or even insignificant bugs. Therefore,
maintainers must manually review and prioritize the submitted
patches to decide if they should be applied immediately or not.
Large-scale commercial software development faces similar
challenges with bug reports from internal testers and changes
proposed by less-experienced developers. This work is time-
consuming and error-prone. For example, Hooimeijer et al. [25]
showed that 70% of the total life-cycle cost of software is
consumed by maintenance, such as modifying existing code
and dealing with bugs.

Given their limited resources, maintainers have to prioritize
which bugs to fix by assigning bugs to different priority levels.
Highest-priority bugs, such as an obvious security vulnerability,
must be fixed immediately. However, lower-priority bugs may
be fixed slowly, remain unpatched for a long period of time, or
fall through the cracks completely. The common practice is for
maintainers to assess the security impacts of bugs manually [39],
which is not only challenging and expensive, but also error-
prone. This manual classification requires considerable human
effort and requires code maintainers to have wide security
domain knowledge.

If the security impacts of a critical bug cannot be correctly
identified, it will be treated as a lower-priority bug, which
will lead to serious security problems. For instance, Arnold
et al. [3] described a high-impact compromise of servers for
Debian Linux made possible by a Linux kernel vulnerability
for which a patch had been available for eight weeks. The
Debian administrators had not updated the kernels because
the security implications of the patch were not clear until
after it was used in a successful exploit. Arnold et al. called
this kind of bug a hidden-impact vulnerability: one that is
not identified as a vulnerability until after it is made public
and potentially exploited by attackers. Their work shows that
32% of vulnerabilities in the Linux kernel were hidden impact
vulnerabilities before they were publicized.

Lack of reliable information about the security impacts of
bugs is even more critical when open-source software is used
in other projects. For example, the Linux kernel is widely used
and customized by a large number of platforms such as the
Internet of Things (IoT) devices and mobile devices (most
prominently Android). A 2018 survey reported by Hall [24]
shows that more than 70% of IoT developers use Linux, and

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24419
www.ndss-symposium.org

Android had a 75% share of the worldwide mobile OS market
as of April 2019 [14]. Given the fragmentation of versions and
uses of the Linux kernel, it would be impossible for every patch
to be promptly applied to every Linux-based device. Instead,
patches must be prioritized based on their severity. For instance,
under the Android Security Rewards Program [22], reporters
are typically required to demonstrate the reproducibility and
impact of the reported bugs; otherwise, the reported patches
will likely be declined. Previously, we reported three new
NULL-pointer dereference bugs to the Android Security team
without mentioning their security impacts or providing a proof-
of-concept exploit. We considered these to be vulnerabilities
because they can cause DoS, but the Android Security team
declined the patches because we did not prove the security
impact of the bugs. The empirical results we report also show
that bugs that cannot be determined to have security impacts
may not be fixed promptly, and thus may introduce serious
security problems.

Given the significance of security bugs, many recent
papers [5, 19, 23, 50, 53, 54, 65] have attempted to distinguish
security bugs from general bugs automatically. Most of these
works focus on analyzing textual information, such as a bug
description, and their classification of security impacts is mainly
based on text-mining techniques. A fundamental limitation is
that such classification is highly dependent on the quality of the
textual information, which in turn depends on the experience
and security-related knowledge of the reporters. Unfortunately,
our results indicate that, in many cases, the reporters themselves
are not aware of the potential security impacts of the bugs
they report. We found that 60.8% of vulnerability patches
for the Linux kernel do not mention security impacts in the
patch description or subjects. Thus, we cannot expect any
classification based on this textual information to reliably
classify security bugs. This observation is consistent with recent
results by Chaparro et al. [8] which show that many textual
bug reports are missing important details and the measurements
of Tian et al. [47] which suggest that bug severity ratings are
unreliable (i.e., they differ even for duplicate reports of the
same bug). To identify security-related patches precisely, we
need a more reliable approach to determine the security impacts
of bug patches based on code instead of prose.

Existing automated tools also do not provide sufficient
support to analyze the security impacts of bugs. Static-analysis
tools can warn about code constructs that may have security
impacts when misused. However, they generally do not analyze
all the factors that affect security impacts. Instead, they make
conservative assumptions and thus produce a significant number
of false-positive reports that must be filtered out in another
step. Providing a proof-of-concept exploit (“PoC”) is strong
evidence of security impacts, but it requires every patch to
include an exploit, which would be a major burden on bug
reporters. Bug-finding tools based on fuzzing [44, 59] or whole-
program symbolic execution [42, 60] often create a PoC when
detecting a problem, but such tools currently generate only a
minority of kernel-bug reports, because of challenges such as
state explosion and modeling hardware devices. We would like
the process of fixing a vulnerability to be faster than the process
of exploiting it if defenders are to stay ahead of attackers. Thus
we need an approach to assess the security impact of a bug
that is easier than generating a PoC. For adoption, such a tool
must have a low false-positive rate and the ability to relate the

results to the specific security impact that is implicated. An
analysis tool must be trustworthy to convince developers to
take a second look at a patch they would otherwise pass by.

In this paper, we propose an automated system, SID, to
determine the security impacts of bugs, given their patches.
Using security rules that capture common security impacts, SID
distinguishes unsafe (rule-violating) and safe (rule-compliant)
behaviors of patched and unpatched code, which allows SID
to characterize the security impacts of a bug. SID employs
differential, under-constrained symbolic execution to match a
security risk that is fixed by a patch. The intuition is that both
security rules and the program behaviors that are feasible in
the unpatched and patched versions can be captured precisely
with symbolic constraints. By comparing security constraints
with code, SID can reliably determine: (1) if the unpatched
code must violate a security rule—the unpatched code has
a security problem, and (2) whether the patched code can
never violate the same security rule—the patched code has
eliminated the security problem present in the unpatched code.
If both conditions are evaluated to be true, this is a strong
confirmation that the patch will fix a security violation, and
thus that the bug will have a security impact. More importantly,
the conservativeness of under-constrained symbolic execution
ensures the reliability and the scalability of SID’s determination
of security impacts. We use slicing and under-constrainted
symbolic execution to precisely analyze just the code region that
is directly relevant to a patch, making conservative assumptions
about interactions with other kernel states. This approach avoids
most false positives but without expanding the analysis to the
whole kernel or requiring an effort that is equivalent to fuzzing
or exploit generation. SID determines security impacts based
on the code semantics instead of textual information. Based
on the semantics, SID can detect the security bugs reliably
and provide details about how a bug can be exploited to cause
security impacts. This supports developers in formulating an
appropriate response to a security bug.

Our priority is for SID’s reports of security impact to be
reliable, i.e., with high precision and few false positives. To
achieve this, we are willing to accept false-negative cases where
there is a security impact that the current implementation of
SID is unable to recognize. Some causes include unusual types
of security impacts that are not captured by SID’s current
security rules and the conservative strategy of under-constrained
symbolic execution that may miss some cases. An empirical
analysis of SID’s false-negative results for known vulnerabilities
appears in §VI-B. Further development to reduce false negatives
would expand the benefits of SID, but since the current state of
practice does not use automated tools to analyze impact at all,
we believe that the best path to adoption and security benefit
is to begin with tools whose results developers can easily trust
when they signal a security bug.

We have implemented SID based on LLVM as multiple
static analysis passes. One is a data-flow analysis pass, which
identifies vulnerable operations and security operations; the
other is an under-constrained symbolic execution pass, which
precisely reasons about security impacts. We choose the Linux
kernel as our experimental target because it is one of the
most widely used and actively-maintained open-source system
programs. The security of the Linux kernel is also important to
many IoT and mobile devices. For evaluation, we selected 66K

2

recent git commits from the Linux kernel. From these commits,
we identified 54K valid commit patches and finally compiled
and analyzed 110K LLVM IR files in total. By analyzing these
files, SID successfully found 227 security bugs with a 97%
precision rate. These security bugs may introduce security
impacts such as out-of-bound access, use-after-free, double-
free, uninitialized use, and permission bypass. More critically,
we found that 21 of these security bugs are still not patched in
Android, which can cause severe security problems for billions
of Android devices.

To further confirm that the identified security bugs are
vulnerabilities, we analyzed the reachability of the security bugs
from attacker-controllable entry points (e.g., system calls) and
also reported them to CVE maintainers. As a result, we find that
67.8% of identified security bugs are potentially reachable from
entry points. On the other hand, we in total reported 154 security
bugs to CVE maintainers and have received 37 responses with
24 new CVEs assigned. The evaluation results show that SID is
effective and precise in automatically determining the security
impacts of a large number of bug patches.

We make the following contributions in this paper.

• A study of security bugs and patches. The boundary
between bugs and vulnerabilities can be unclear. We first
study the differences between bugs and vulnerabilities. We
then model patches for common security bugs, including
missing/wrong bound check, missing pointer nullification,
missing initialization, and missing permission check. The
modeling enables us to define the security impacts of bugs
and thus confirm security bugs.

• Symbolic rule comparison for determining security
impacts. We propose SID to determine the security
impacts of bugs automatically. The core of SID is symbolic
rule comparison which employs differential and under-
constrained symbolic execution to precisely confirm the
security impacts that a patch fixes. In addition, SID also
provides details about the security impacts to facilitate
bug fixing.

• Finding of security bugs and unpatched vulnerabilities.
With SID, we found 227 security bugs in the Linux kernel;
21 of them still remain unpatched in Android, which can
be exploited to attack billions of Android devices. Also, 24
new CVEs have been assigned to the identified security
bugs. Further, we evaluated the reachability of all the
identified security bugs, and found that 67.8% of them
are potentially reachable from attacker-controllable entry
points.

The rest of this paper is organized as follows. We review
background concepts in §II, and give an overview of our
approach in §III. We then present the design of SID in section
§IV; the implementation of SID in section §V; the evaluation
of SID in section §VI; limitations and future work in section
§VII; related work in §VIII; and the conclusion in §IX.

II. BACKGROUND

To propose an effective approach to understand the causes
and security impacts of bugs and thus to find security bugs,
we analyzed some existing patches for vulnerabilities in the
Linux kernel. Specifically, we first show differences between
general bugs and vulnerabilities. Then, we analyze the common

causes and security impacts of vulnerabilities. Based on the
statistical results, we summarize the model and components
of the vulnerability patches. After that, we define the problem
scope and the assumptions of this work.

A. General Bugs, Security Bugs, and Vulnerabilities

A bug is a vulnerability if it causes security impacts when
triggered. A vulnerability is also called a security-critical bug
(or just a security bug), and is distinguished from a general
bug. Different kinds of vulnerabilities often differ in security
impacts. The example in Figure 1 shows the difference between
a general bug and a vulnerability. In this example, missing
the check in line 3 is a vulnerability because it leads to an
out-of-bound access in line 9. In comparison, missing the check
in line 6 will not introduce any security impact; thus, it is just
a general bug. More details about the definition and detection
for security checks can be found in previous work [51].

1 int Bug_Vuln(unsigned int Type) {
2 char colors[4] = {’r’,’g’,’b’,’-’};
3 if (Type > 3)
4 return -1;
5

6 if (Type == 3)
7 return 0;
8

9 printf("Color Type: %c", colors[Type]);
10 return 0;
11 }

Fig. 1: Differences between a vulnerability and a general bug. Missing
the check in line 3 results in a vulnerability while missing the check
in line 6 is a general semantic bug.

B. Common Security Bugs and Impacts

Common security bugs Percent Main security impacts(root cause) of bugs

Missing/wrong bound check 21% Out-of-bound access
Missing initialization 9% Uninitialized use
Missing permission check 9% Permission bypass
Missing NULL check 7% NULL-pointer dereference

Use-after-free, double-free,
Missing/wrong locks/unlocks 6% Permission bypass,

NULL-pointer dereference
Out-of-bound access,

API misuse 5% Permission bypass,
Uninitialized use
Out-of-bound access,

Missing error-code check 5% Uninitialized use,
NULL-Pointer dereference

Missing pointer nullification 4% Use-after-free, double-free
Uninitialized use,

Others such as Out-of-bound access,
numerical errors 34% NULL-pointer dereference,

Others

TABLE I: Common security bugs and security impacts.

In this work, we aim to cover the most common security
bugs and their corresponding security impacts. To this end, we
first examined recent Linux-kernel vulnerabilities included in
the national vulnerability database (NVD). There are nearly
800 vulnerabilities reported in the past three years, but only
a small part of them include valid git-commit information of
their patches. Thus, we chose to analyze 100 of them across
these years.

3

Table I presents the analysis results. The most common
causes for security bugs in the Linux kernel are missing
or wrong security checks (bound check, permission check,
NULL check, etc.), missing initialization, missing or incorrect
locks/unlocks, API misuse, and missing nullification. The
following results also show the relationship between the
root causes of security bugs and their security impacts: (1)
missing/wrong bound check typically leads to out-of-bound
access; (2) missing initialization often leads to uninitialized
use; (3) missing permission check leads to permission bypass;
(4) missing NULL check commonly leads to NULL-pointer
dereference; and (5) missing pointer nullification leads to use-
after-free and double-free.

In the study, we differentiate the bugs (i.e., the root causes)
from their security impacts, which are often mixed up in
traditional vulnerability classification (e.g., in NVD). While
traditional vulnerability classification tends to focus on security
impacts, they are not the root causes. For example, missing
a bound check is the bug; however, the out-of-bound access
caused by the missing-check bug is the security impact. As
such, bug patches typically fix the root causes and only
indirectly prevent security impacts. Therefore, to determine
security impacts, we need to analyze the “effects” of patches.
Moreover, we define security impacts based on the security-rule
violating operations (e.g., out-of-bound access and use-after-
free) instead of the resulting exploits such as information leaks
or control-flow hijacking. This is consistent with the goal of
SID—determining how a bug results in security-rule violating
operations. How these operations can be exploited for an attack
is out of our scope.

C. Patch Model and Components

To determine the security impacts with a given patch, we
first need to identify the components in the patch that are related
to security impacts and to build a patch model. Based on our
empirical analysis of existing patches for vulnerabilities, we
identify three key components in determining security impacts.
We then create a patch model that incorporates the components,
as shown in Table II. In this model, the three components are
security operations, critical variables, and vulnerable operations.
(The symbol, +, indicates security operations introduced by the
patch).

• Security operations are used in patches to fix at least one
security impact. Table I shows that missing or wrong security
operations are the most common root causes for security bugs.
From those statistical results, we summarize the common
security operations: security checks (e.g., bound checks,
permission checks), initialization operations, lock or unlock
operations, and pointer nullification.

• Critical variables are the ones whose (invalid) values or
status can lead to security impacts. As such, critical variables
are typically targeted by security operations. For example, a
checked bound variable is a critical variable.

• Vulnerable operations signal the risk of a security bug,
often because they can behave unsafely. Based on our
study, common vulnerable operations include buffer and
array operations, read or write operations, pointer operations,
operations involving critical data structures such as inodes
or files, and resource-release operations.

1.+ Security_op(CV, ...)

...

2. Vulnerable_op(CV, ...)

TABLE II: The common patch model and the three key components:
security operation, critical variable (CV), and vulnerable operation.
The security operation is typically added or updated by a patch.

This model shows that patch updates or adds new security
operations in the vulnerable code to eliminate the security
impacts which are introduced by the vulnerable operations.
Most commonly, a security operation is inserted before a
vulnerable operation to prevent an unsafe state. Evaluation
results in §VI-E show that about 88% of vulnerabilities in the
Linux kernel can precisely or partially fit into this model. Thus,
we can use this model to determine security impacts for most
patches.

D. Problem Scope and Assumptions

In this work, we analyze the bug patches in the Linux
kernel. We choose the Linux kernel as the target program for
the following reasons. (1) The Linux kernel is a foundational
and widely used program. Many other operating systems are
based on the Linux kernel, such as Android. Security bugs in
the Linux kernel may introduce critical security impacts in all
Linux-based systems. Thus, applying patches for security bugs
in the Linux kernel is vital. (2) The Linux kernel is an open-
source program with a well-maintained patch history, which
facilitates patch-based analyses. These reasons motivate us to
choose the Linux kernel as the experiment target. However,
SID is general and applicable to other similar software such as
FreeBSD and Firefox, as discussed in §VII.

We assume that the provided patches correctly fix actual
bugs. We may not correctly obtain the security impacts of
vulnerabilities if the patches are incorrect. Based on the
statistical results in Table I, we choose to determine all the
common security impacts listed in Table III. The current
version of SID does not include NULL-pointer dereference
because it is difficult to exploit in the Linux kernel—the zero
page is protected against being allocated. However, NULL-
pointer dereference can be naturally supported by modeling
the “non-NULL” as a constraint and the NULL dereference as
a vulnerable operation. Table XII shows how to use our model
to cover the patches for other common types of vulnerabilities.
Also, more details about extending SID to detect more types
of bugs are discussed in §VII.

To determine common security operations related to these
impacts, we selected 100 recent vulnerabilities for each security
impact in the Linux kernel from NVD. By manually checking
the patches of these vulnerabilities, we count the security
operations as shown in Table III. Based on this result, we
choose to cover the most common security operations for each
security impact including: (1) bound checks, (2) initialization
operations, (3) permission checks, and (4) pointer nullification.
In our current implementation, we do not include other security
operations such as lock or unlock operations because either
they are not common or they predominantly cause non-
security impacts such as incorrect results. In total, based on
Table III, by calculating the proportion of these covered security
operations against these common security impacts, the current

4

Common security impacts (%) Common security operations (%)

Permission check (59%)
Permission bypass (21.9%) Changing permission flags (8%)

Others (33%)
Bound check (79%)

Out-of-bound access (16.5%) Reset the size of buffer (10%)
Others (11%)

Uninitialized use (13.7%) Initialize the variable (78)%
Others (22%)
Pointer nullification (32)%

Use-after-free/double-free (4.3%) Lock or unlock operations (25%)
Others (43%)

TABLE III: Common security operations for fixing common security
impacts.

implementation of SID can support about 38% of vulnerabilities.
However, SID’s approach is generic, and covering more types
of vulnerabilities requires only extra engineering efforts for
modeling and identifying the three patch components. Table XII
shows how to support several more types of bugs which can
cover 13% more of vulnerabilities. More discussion can be
found in §VII.

We further assume that the bug fixed by a patch is
triggerable, which means that, by providing specific inputs,
the execution can reach the buggy code. Existing techniques,
such as guided fuzzing [55, 61] and symbolic execution over
untrusted inputs [42, 60], can search for inputs that trigger a bug.
However, determining how to trigger a bug can be challenging;
if a bug has security impacts, it is usually worthwhile to fix it,
even if it is not obvious to be triggerable.

1) Security Rules: Security impacts occur when security
rules are violated. To precisely determine if a security impact
exists, we also need to define the corresponding security rule.
The specific security rules help SID construct constraints that
can be solved. With security rules, the determination of security
impacts can be transformed into a constraint-solving problem.
For the security impacts shown in Table III, we define the
corresponding security rules as follows, which are consistent
with the standard definition in CWE [12].

• Out-of-bound access. Memory read and write operations
should be within the boundary of the current object.

• Use-after-free and double-free. An object pointer should
not be used after the object has been freed.

• Uninitialized use. A variable should not be used until it
has been initialized.

• Permission bypass. Permissions should be checked before
performing sensitive operations such as I/O.

III. OVERVIEW OF SID

Given a patch and the target program, SID automatically
determines if the patch fixes some security impacts. In this
section, we show the approach and workflow of SID.

A. The Approach of SID

We now use an example, shown in Figure 3, to illustrate
the symbolic rule comparison approach of SID. This is an
out-of-bound access security bug that is fixed by a patch that

inserts a bound check in line 6. Given this patch, the goal of
symbolic rule comparison is to confirm whether the patch fixes
violations of some security rules, e.g., out-of-bound access,
that introduce security impacts.

Symbolically analyzing patched code. First, SID analyzes
the patched version to prove that it will never violate a security
rule. In function iwl_sta_ucode_activate, SID identifies the
security operation in the patch, bound check in line 6. Then,
SID extracts the critical variable, sta_id, from the security
operation. By using data-flow analysis, SID identifies six
potential vulnerable operations located in lines 11, 14, 16,
19, 21, and 23. Each pair of security operation and vulnerable
operation defines a slice, and SID performs under-constrained
symbolic execution against each slice. SID will construct and
collect three sets of constraints. The first set of constraints
are constructed from the security operation of the patch,
e.g., sta_id < IWLAGN_STATION_COUNT, in the example. The
second set of constraints is collected from the slice through
symbolic execution (e.g., capturing if a variable is modified
via arithmetic). After that, SID artificially constructs the third
set of constraints that represent the violation of a security rule,
e.g., memory access out of the bound of stations. All the
three constraint sets are then merged as the final constraint set.
Finally, SID employs a constraint solver to prove that the final
constraint set is unsolvable, which means that the slice will
not violate the security rule.

Symbolically analyzing unpatched code. Second, if the
patched version never violates a security rule, SID analyzes the
unpatched version to prove that every behavior removed by the
patch would violate the security rule. A slice in the patched
code is matched with one in the unpatched code based on its
critical variables and vulnerable operation, as described in more
detail in §V-D. Similar to the analysis for the patched code,
SID constructs and collects three sets of constraints for the
unpatched code, however, in a different way. Specifically, the
first set corresponds to the security operation in the patch. Since
the security operation is not in the unpatched code, SID will add
an artificial constraint that is the opposite of the constraint for
the security operation; it is important to note that this captures
the behaviors that are blocked by the security operation in the
patched code. For example, while the security operation is to
ensure sta_id < IWLAGN_STATION_COUNT, SID will instead add
a constraint, sta_id >= IWLAGN_STATION_COUNT. The second
constraint set is similarly collected from the slice through
symbolic execution. The last constraint set corresponds to the
security rule. However, the constraints are constructed in such
a way that they satisfy rather than violate the security rule, e.g.,
in-bound access of stations. Finally, the three constraint sets
are merged and proved to be unsolvable, i.e., the unpatched code
will violate the security rule in all the cases blocked by the patch.
The first and the third constraint sets of the unpatched version
are constructed in a opposite way as in the patched version,
which allows SID to leverage the conservative unsolvability of
under-constrained symbolic execution to precisely determine
the security impacts.

Confirming security impact. At last, if both cases are indeed
unsolvable, SID confirms that the patch is a fix for a security-
rule violation. In other words, the corresponding bug is a
security bug. Symbolic execution allows SID to precisely check
the match between a patch and the corresponding security

5

Security operation

Critical variables

Vulnerable operation

Security operation

Vulnerable operation

Critical variables

Dissecting patches

Bug patch

Pre-processing

Patched version

Dependent files LLVM IRs

Compile

Unpatched version
Dependent files LLVM IRs

Compile

Static
analysis

Static
analysis

Symbolic rules comparison

Solving
constraints

CP, CSO,
CSR

Unsolvable!

Security bugs

Collecting
constraints

Unsolvable!C'P, C'SO

C'SR,
Solving
constraints

Collecting
constraints

Security
rules

Fig. 2: Overview of SID. CSO = Constraints from security operations, CSR = Constraints from security rules, CP = Constraints from paths.

1 /* Linux: drivers/net/wireless/intel/iwlwifi/dvm/sta.c
2 * CVE-2012-6712 */
3

4 int iwl_sta_ucode_activate(... , u8 sta_id)
5 {
6 + if (sta_id >= IWLAGN_STATION_COUNT) {
7 + IWL_ERR(priv, "invalid sta_id %u", sta_id);
8 + return -EINVAL;
9 + }

10

11 if (!(priv->stations[sta_id].used))
12 IWL_ERR(priv,"Error active station id %u "
13 "addr %pM\n",
14 sta_id, priv->stations[sta_id].sta.sta.addr);
15

16 if (priv->stations[sta_id].used) {
17 IWL_DEBUG_ASSOC(priv,
18 "STA id %u addr %pM already present in uCode"
19 sta_id, priv->stations[sta_id].sta.sta.addr);
20 } else {
21 priv->stations[sta_id].used |= IWL_STA_UCODE_ACTIVE;
22 IWL_DEBUG_ASSOC(priv, "Added STA id %u addr %pM\n",
23 sta_id, priv->stations[sta_id].sta.sta.addr);
24 }
25

26 return 0;
27 }

Fig. 3: A missing bound-check bug and its patch (lines 6-9).

rule, while the under-constrained approach makes the analysis
conservative about parts of the code outside the analysis scope.

B. The Workflow of SID

Figure 2 is an overview of SID including the following three
main phases: pre-processing, dissecting patches, and symbolic
rule comparison.

Pre-processing. The pre-processing phase includes two tasks.
First, given a specific git commit, it ensures that it is a bug-
fixing patch. Commits for branch merging, documentation,
and code formatting are eliminated. Second, it identifies the
dependent files of the patch, which are collected using standard
control-dependency analysis against the patched code and taint
analysis against the variables involved in the patch, in both a
forward and backward manner. We found that the dependent
files are a single file containing the patch in most cases. It then
prepares the patched code and unpatched code (by reverting
the patch) and invokes LLVM to compile them into LLVM IR
files.

Dissecting patches. In this phase, SID dissects the patch to
identify the key components according to the patch model
(§II-C). SID first identifies the security operations in both the

patched and unpatched versions. SID then extracts involved
critical variables from the identified security operations. Next,
SID applies data-flow analysis against critical variables to
collect vulnerable operations. The data-flow analysis also
helps SID collect slices from security operations to vulnerable
operations for the critical variables. It is worth noting that
security operations and vulnerable operations have a many-
to-many mapping, which means that a single patch may have
multiple slices. After obtaining these slices, SID further employs
symbolic execution to test the feasibility of the slices by
testing if the path conditions of the slices are satisfiable. If
the conditions are unsatisfiable, the path is infeasible, and is
immediately discarded.

Symbolic rule comparison. For the feasible slices, SID then
performs a symbolic rule comparison to confirm the security
impacts of the bug with the approach described in §III-A.

IV. DESIGN OF SID

In this section, we present the design of SID. In particular,
we focus on the static analysis for dissecting patches and
symbolic rule comparison for determining security impacts.

A. Static Analysis for Dissecting Patches

Given a patch and the target program, SID employs static
analysis to (1) identify security operations, critical variables,
and vulnerable operations and (2) construct slices from security
operations to vulnerable operations for the critical variables.
According the the patch model (§II-C), we summarize the patch
patterns for each class of vulnerability in Table IV.

Out-of-bound access Permission bypass
1.+ Security_ck(Bound); 1.+ ret = Perm_func(CV, ...);

... 2.+ Security_check(ret);

... ...
2. Vulnerable_op(Bound, ...); 3. Vulnerable_op(CV, ...);

Use-after-free or double-free Uninitialized use
1. free(Pointer); 1.+ Initialize(CV);

2.+ Pointer = NULL; ...
... ...
3. Vulnerable_op(Pointer, ...); 2. Vulnerable_op(CV,...)

TABLE IV: Patch patterns for different classes of vulnerabilities and
the key components in the patches. + denotes the security operation in
the patches, and Vulnerable_op represents some vulnerable operations.

Identifying security operations. First, SID analyzes the
patches to identify security operations. As described in §II-D,

6

SID identifies four kinds of security operations: permission
check, bound check, initialization operation, and pointer nul-
lification. Based on the statistical results in Table III, we
summarize common patterns of patches in Table IV. These
patterns describe how security operations fix the corresponding
security impacts caused by the vulnerable operations. For out-
of-bound access vulnerabilities, the patches typically insert the
security operation, bound check, to make sure in-bound access
against a memory object. For permission bypass vulnerabilities,
the patches insert permission check as the security operation.
The permission checks are usually done by checking the
return value of permission functions. For use-after-free and
double-free vulnerabilities, the patches often insert pointer
nullification as the security operation. Since, in the Linux
kernel, NULL check is typically enforced before using a pointer,
nullification becomes a common way for fixing use-after-
free. For uninitialized-use vulnerabilities, the patches instead
initialize a memory object before it is being used. §V will
present further details on analyzing the code to identify the
security operations.

Extracting critical variables. Next, SID extracts the targets
of the identified security operations as critical variables. For
nullification, initialization, and bound-check cases, critical
variables can be easily identified by extracting the involved
variables (not constants). However, the critical variables in
permission-check cases can be challenging to identify. The
method SID uses to identify such critical variables is based
on permission functions (e.g., ns_capable()) which include
both critical variable and capability numbers as parameters.
Non-constant parameters (e.g., objects such as files, inodes, or
subjects such as users) used in such permission functions are
typically sensitive resources whose accesses require permission
checks. Therefore, SID identifies these parameter variables as
critical variables.

Slicing to find vulnerable operations. After extracting the
critical variables, SID then uses data-flow analysis to find
vulnerable operations using extracted critical variables, i.e.,
slicing to find vulnerable operations. An operation is regarded
as a vulnerable operation if it may introduce security impacts via
the critical variables. We do the backward or forward data-flow
analysis against the critical variables to match the vulnerable
operations, according to the corresponding patterns shown in
Table IV. With that, we also obtain slices for critical variables
that involve both security operations and vulnerable operations.
Because vulnerable operations and security operations are
many-to-many mappings, one vulnerable operation or security
operation can be in multiple slices. More details about collecting
vulnerable operations for different kinds of vulnerabilities can
be found in §V-C.

Pruning slices. After extracting these slices, SID removes
slices with the following cases. (1) The critical variables are
newly introduced in the patch. In this case, the unpatched code
will never use them. (2) The vulnerable operations exist only
in the patched version but not in the unpatched version, which
means that the vulnerable operations are also newly introduced
by the patch, and corresponding security impacts will not exist
in the unpatched version.

Removing infeasible slices. Finally, SID removes infeasible
slices using symbolic execution. SID performs the under-

constrained symbolic execution for each slice to collect path
constraints. When reaching the end of the slice, SID tries to
solve the constraints. If these constraints are unsolvable, SID
will discard this slice. Removing unsolvable slices will reduce
false positives and make sure that the unsolvability in symbolic
rule comparison must be related to security-rule violations (not
vacuous), ensuring the effectiveness of SID.

B. Symbolic Rule Comparison

SID further performs a symbolic rule comparison to
determine security impacts and identify security bugs. SID
determines that a patch is for a security bug if the patched and
unpatched versions satisfy both of the following requirements.

• The patched version never violates a security rule.
• The unpatched version always violates the security rule in

the situations excluded by the patch.

The checking against the absolute requirements is possible
because SID uses under-constrained symbolic execution, which
is conservative [41]. By combining both requirements, it is
intuitive to determine that the patch prevents violation of a
security rule. To realize the checking against the requirements,
SID first constructs and collects the constraint sets from patches,
security rules, and the slice paths for the patched and unpatched
code separately. If both constraint sets for the patched and
unpatched code are unsolvable, SID determines the security
impact.

1) Constructing and Collecting Constraints: SID constructs
and collects three sets of constraints for both the patched version
and the unpatched version. These constraints come from three
sources—security operations from the patch, the code path
of each slice, and security rules. We now describe how SID
collects or constructs these constraints.

Security operations Constraints from security operations
Patched version Unpatched version

Pointer nullification FLAGCV = 1 FLAGCV = 0

Initialization FLAGCV = 1 FLAGCV = 0

Permission check FLAGCV = 1 FLAGCV = 0

Bound check CV < UpBound, or CV ⩾ UpBound, resp.
CV > LowBound CV ⩽ LowBound

TABLE V: Constraints for security operations from patches. FlagCV :
Flag symbol; CV: critical variable; UpBound: checked upper bound;
LowBound: checked lower bound.

Constructing constraints from security operations. The
constraints from security operations are used to capture the
“effects” of them in preventing security impacts. We define the
constraints for each class of security operation for the patched
and unpatched code, respectively. Table V shows our rules
for constructing constraints for different security operations.
Besides out-of-bound access, constraints for other security
operations are used to indicate whether the security operations
are present. Therefore, we use a binary-flag symbol to represent
the constraint. Specifically, FLAGCV indicates the status of the
corresponding critical variables, in terms of the presence of
the security operations. FLAGCV = 1 means that the security
operation has been enforced against critical variable CV. By
contrast, FLAGCV = 0 indicates the absence of the security

7

operation for CV. The constraints for bound-check cases are
more complicated. The constraints are used to limit the upper
bound and/or the lower bound of a memory object. In addition
to indicating the presence of the security operation, we also
need to know the specific value range of the value of the critical
variables. Thus, we use symbolized critical variable to represent
the value.

To check against the requirements for the patched and un-
patched code, we must construct these constraints differently (in
an opposite way). For permission bypass, use-after-free, double-
free, and uninitialized use, SID inserts constraints FLAGCV = 1
for the security operations in the patched version while inserting
FLAGCV = 0 in the unpatched version because the security
operations are missing. For out-of-bound access vulnerabilities,
SID adds the constraints CV < UpBound and/or CV > LowBound
on the symbolized critical variable in the patched version.
For example, in Figure 3, the constraint from the security
operation in the patch is sta_id < IWLAGN_STATION_COUNT. The
values of UpBound and LowBound are determined based on the
specific bound-check security operations. In the unpatched
version, SID instead inserts the constraints, CV >= UpBound
or CV <= LowBound, which are opposite to the ones in the
patched version. This is to prove that, without the security
operation, an out-of-bound access problem will occur in the
unpatched version. For the example in Figure 3, SID will
insert the constraint sta_id >= IWLAGN_STATION_COUNT for the
unpatched version.

Collecting constraints from slice paths. The constraints from
paths (from a security operation to a vulnerable operation)
are collected from two parts. The first part is the same as
the one in removing infeasible slices (see §IV-A). These
constraints are collected from path conditions that are checked
to make sure the slice itself is feasible. The second part is to
collect manipulations against critical variables. For example,
in the uninitialized use case, for an initialization against the
critical variable in the slice path, SID will add a constraint,
FLAGCV = 1.

Constructing constraints from security rules. The last set
of constraints SID constructs are from the security rules. These
constraints are important to evaluate if a security-rule violation
may occur. We develop multiple rules for constructing these
constraints of different security rules, as shown in Table VI.
SID also constructs opposite constraints for the patched and
unpatched versions.

For the patched version, we want to prove that, with
the protection of the security operations, it is impossible to
violate the security rules. Therefore, SID inserts rule-violating
constraints and hopes that they are unsolvable, i.e., FlagCV = 0,
CV >= MAX and/or CV <= MIN. SID will first employ static
analysis to figure out the size of the memory object in use. In
the example in Figure 3, SID can easily find that the buffer,
stations[], is on the stack with a fixed length 16. For other
cases, e.g., the buffer is on the heap, SID will use backward
data-flow analysis to find the allocation site to determine its
size. If the size is a constant, the value will be used; otherwise,
for a variable, SID instead symbolizes it. After knowing the
buffer size, SID then inserts an out-bound constraint (e.g.,
sta_id >= 16) for the patched version. For the unpatched
version, we want to prove that, without the security operations,

it always violates the security rules. In order to achieve this,
the constraints in the unpatched version will be opposite to the
constraints in the patched version, which instead represents the
compliance of the security rules. Here, we hope to prove that the
constraints are unsolvable, so the compliance of security rules
is impossible. For example, in Figure 3, from the security rule
of in-bound access, SID inserts the constraint, sta_id < 16,
for the unpatched version.

Security rules Patched version Unpatched version

No use after free FLAGCV = 0 FLAGCV = 1

Use after initialization FLAGCV = 0 FLAGCV = 1

Permission check before
FLAGCV = 0 FLAGCV = 1sensitive operations

In-bound access CV ⩾ MAX, and/or CV < MAX, resp.
CV ⩽ MIN CV > MIN

TABLE VI: Rules for constructing constraints from security rules.
MAX: maximum bound of the buffer; MIN: minimum bound of the
buffer.

2) Solvability for each slice: To know the solvability of each
slice, SID merges the three sets of constraints as the final ones
for the patched and unpatched versions, respectively. SID then
uses SMT solver, Z3, to solve the constraints. In the example
in Figure 3, for the patched version, the final constraint set
is sta_id < IWLAGN_STATION_COUNT && sta_id >= 16, which
are generated from the security operation and security rules.
Similarly, for the unpatched version, the final constraint set
is sta_id >= IWLAGN_STATION_COUNT && sta_id < 16. Both
final constraint sets for the patched and unpatched versions are
unsolvable, because IWLAGN_STATION_COUNT is 16.

3) Comparison against symbolic rules: Finally, after solving
these constraints, SID compares the results of solvability to
determine security impacts. A patch is determined to fix a
security impact if the constraints for both the patched and
unpatched versions are unsolvable, which means that the
patched version must not violate the security rule, and the
unpatched version must violate the security rule. Therefore, the
patch fixes the violation against the security rule. Thanks to
the conservativeness of under-constrained symbolic execution,
the determination is precise. In the example in Figure 3, SID
finds both constraints in the patched and unpatched versions
unsolvable, so this patch fixes an out-of-bound access problem.
If either constraint set is solvable, SID disqualifies the bug
fixed by the patch as a security bug.

V. IMPLEMENTATION

We have implemented SID on top of LLVM with multiple
passes for finding security checks, symbolic execution, and data-
flow analysis. SID in total contains 5.6K line C++ code and 1.2K
line Python code. The rest of this section presents important
implementation details of SID, including preparing analysis
environment, collecting vulnerable and security operations,
matching information between the patched version and the
unpatched version, and the symbolic-execution engine.

A. Preparing Analysis Environment

Since not all of the patches fix bugs, we use script code to
eliminate common non-bug commits such as branch merging,

8

documentation, and indentation updating. In total, 17.4% of git
commits are classified as non-bug commits and thus eliminated,
which improves the efficiency of SID. For the remaining patches,
SID continues to generate LLVM IR and dissect them.

Preparing LLVM IR. Since SID is based on LLVM, the
patches should be compiled into LLVM IR with a patched
version and an unpatched version. Because the corresponding
vulnerable operations can be in other source files than the one
containing the patch, we employ static analysis to extract the
dependent files from the patch automatically. We first extract the
patch code and variables involved in the patch. Then, we employ
standard control-dependency analysis against the patched code
and taint analysis against the involved variables, in a both
forward and backward manner, to identify all dependent files.
Interestingly, we found that, in most cases, the file containing
the patch also contains the vulnerable operations. The unpatched
version is obtained simply by checking out the git commit right
before the one for the patch. Finally, we invoke clang to
compile these files, for both the patched version and unpatched
version, into LLVM IR.

To mitigate the path-explosion problem in the under-
constrained symbolic execution, we unrolled loops in the LLVM
IR level by treating them as if statements, which is a common
practice adopted by recent techniques [56, 57]. To identify
indirect-call targets, we take recent advances that use struct
types to match the function targets [18, 31, 62].

B. Identifying Security Operations

As shown in §IV, in dissecting patches, SID first identifies
security operations. By analyzing the patch code in the git log,
SID can tell if a patch contains security operations. However, the
security operations can be intended for new variables introduced
in the patch. In this case, the security operations are not aimed
at fixing bugs in the unpatched code. To eliminate these cases,
SID ensures that the critical variables are also in the unpatched
code. Further details are presented in §V-D. For different types
of security impacts, the corresponding security operations are
different. We identify security operations as follows.

• Bound checks. We regard bound checks as security
operations. We use two criteria to identify bound checks.
(1) A bound check uses a conditional statement such as if
statement. The operator of the comparison instruction should
be =, >, <, >=, or <=, and both of the operands of bound
check should be of integer type such as int or unsigned.
(2) One branch of the conditional statement should result in
error handling (e.g., returning an error code) when a bound
check fails while other branches continue normal execution.
This is similar to the check definition in [31, 35].

• Pointer nullification. NULL checks are typically enforced
before using pointers. Based on the common patch patterns,
we regard pointer nullification as the security operation
against use-after-free. Nullification can be easily identified
when NULL is assigned to a pointer.

• Initialization. We regard initialization operations as the
security operations against uninitialized use. Initialization is
either a store instruction that assigns 0 to a variable or a
call to memset() that takes 0 as the value argument.

• Permission checks. Permission check is the security
operation against permission bypass. By looking into how

permission bypass is commonly patched, we first empir-
ically collect the common permission functions such as
afs_permission() and ns_capable(). Then, we identify a
conditional statement (e.g., if statement) as a permission
check if it is a security check [31] against the return value
of these permission functions.

C. Identifying vulnerable operation

SID then identifies vulnerable operations. To do that, SID
first extracts the critical variables from the identified security
operations, as described in §IV-A. Based on the uses of the
critical variables, SID employs data-flow analysis (i.e., slicing)
to identify the vulnerable operations, according to the rules
in §II-C. Here, we have extracted the critical variables from
security operations. With that, we present some implementation
details on the identification of vulnerable operations that use
the critical variables.

• Out-of-bound access. We first identify the instructions that
access an array or buffer using the critical variables (i.e.,
size variables) as vulnerable operations. We also identify
common read or write functions (e.g., memcpy()) that take
as input the critical variables as vulnerable operations.

• Use-after-free and double-free. We conservatively identify
all pointer dereference operations that target the critical
variables as vulnerable operations.

• Uninitialized use. We identify the common operations on
the uninitialized variables as vulnerable operations. These
common operations include pointer dereference, function
calls, memory access, and binary operations such as arith-
metic operation. Also, these operations must also target the
critical variables.

• Permission bypass. Based on the extracted the critical
variables in permission checks, which take struct types
such as kuid_t, inode, file or corresponding pointer types,
we conservatively identify operations against critical variables
as vulnerable operations.

D. Mapping Operations in Patched and Unpatched Versions

A patch may involve multiple security operations and
vulnerable operations, thus multiple slices. To perform the
symbolic rule comparison, we need to map the corresponding
slices in the patched and unpatched versions. SID pairs slices
relying on various types of information such as function name
and control flow. Specifically, to pair the slices, SID first extracts
the vulnerable operation of the slices for both the patched and
unpatched versions. The vulnerable operations must exactly
match. If the vulnerable operations are matched, SID further
employs control-flow comparison to make sure that the two
slices are the same except the parts introduced by the patch.
With these two steps, SID can map the slices between the
patched version and the unpathed version.

E. The Under-Constrained Symbolic-Execution Engine

SID uses under-constrained symbolic execution to analyze
the code for patched and unpatched versions. Similar to UC-
KLEE [41], the symbolic execution of SID can start from
any point in a function. Specifically, SID only executes on
the slices collected from the static analysis during dissecting

9

patches. Since the collected constraints in these individual slices
are not complete, they are under-constrained, which may lead
to false negatives. However, SID’s main goal is to determine
security impacts with a low false-positive rate. We will discuss
how to collect more constraints beyond the slices in §VII.

Avoiding path explosion. Path explosion is a general problem
in symbolic execution, which is fortunately mitigated in SID.
Different from the whole-program symbolic execution, SID
only works on the slices collected by the static analysis. Most
of the security operations are near the vulnerable operations,
so most slices are short, involving a single module. As such,
the path-explosion problem, in most cases, does not occur.
However, we did observe the path-explosion problem in some
instances. To completely avoid path explosion, SID chooses to
discard slices with more than 150 basic blocks. This threshold
number is carefully selected based on our statistical study—
more than 98.8% of slices cover less than 150 basic blocks.
The heuristic is also used in previous works, such as UC-KLEE
[41], to alleviate path explosion. By using this method, slices
can be symbolically analyzed quickly without encountering the
path-explosion problem.

VI. EVALUATION

We evaluate the accuracy, effectiveness, and scalability of
SID, and also present new findings regarding characteristics
of security bugs. We chose the Linux kernel as the target
program, and collected more than 66K git commits in recent
years. During the pre-processing, 11,433 non-bug commits
are eliminated, which finally returns us 54,651 valid patches.
For these valid patches, we generated 110,136 LLVM IR bit
code files for both the patched and unpatched versions. The
experiments were performed on Ubuntu 18.04, 64-bit OS with
LLVM-8.0. The machine has a 32GB RAM and is equipped
with six cores Intel (R) Xeon (R) W-2133 CPU @ 3.60GHz. It
is worth noting that the following measurement uses a single
thread without parallel computing.

Efficiency and scalability. For each patch, SID analyzes both
the patched version and the unpatched version. The analysis
takes an average of 0.415 seconds (median 0.056s, max 15s) for
each version, which means that, for every patch, the analysis
costs 0.83 seconds on average. During the analysis, the detection
of out-of-bound read or write vulnerabilities patches takes 63 %
of the total time, while all other cases take only 37% of the total
time. Processing patches for out-of-bound access vulnerabilities
requires more time since some more slices and constraints that
are more complex, requiring more time for symbolic execution.
The results indicate that SID is efficient enough to handle a
massive amount of patches precisely.

A. False Positives of SID

We use precision, |TP| / |TP+FP|, to evaluate the false
positives of SID, where TP and FP are the numbers of true
positives and false positives. To calculate the precision, we
manually checked all the results generated by SID. In order to
precisely confirm that these bugs are true security bugs, we look
into the patch description (comments), the patch code, and the
involved source code. If the comments have already mentioned
the same security impacts as SID found, we regard them as a
security bug because both Linux maintainers and reporters have

confirmed the security impact. Otherwise, we manually review
the patch code and the involved source code to check (1) if the
vulnerable operations found by SID indeed introduce security
impacts in the unpatched version and (2) if these security
impacts are eliminated by the security operations in the patch.
If both of these conditions are true, we confirm the security
impacts and the security bug. Finally, we confirmed 227 security
bugs with 8 false-positive cases. As a result, the precision
rate of SID is 97%. We investigated these false positives and
summarized the reasons as follows.

Missing constraints in preventive-patching cases. SID
employs under-constrained symbolic execution to analyze
only the slices that start from the security operations to the
vulnerable operations. As such, earlier constraints that are
before the security operations will be missed. In general, if the
“earlier” constraints have already been able to prevent a security
impact, the constraints in the patch are unnecessary. However,
we did find five cases in which the patches are preventive
and enforce redundant constraints. Developers enforce the
preventive patches because the “earlier” constraints can be
changed in future code. In these cases, SID will identify them
as patches fixing security bugs, leading to false positives.
Eliminating all these preventive patches is a hard problem,
which requires a more complete constraints set. However, we
would like to mention that these five cases violate SID’s threat
model—the provided patches correctly fix actual bugs.

Inaccurate static analysis. During dissecting patches, SID
employs static data-flow analysis to find the slices from security
operations to vulnerable operations. Due to the inaccuracy
of the static analysis and the incompleteness of identifying
security or vulnerable operations, many slices are infeasible.
Although SID further employs symbolic execution to validate
the slices, because the symbolic execution is under-constrained,
the resulting slices may still be infeasible, leading to false
positives. The remaining three false positives are caused by
such inaccuracy. In the future, we plan to improve the under-
constrained symbolic execution by collecting more constraints,
as discussed in §VII.

B. False Negatives of SID

By design, SID aims to ensure less false positives by
allowing more false negatives. In this section, we evaluate
the false negatives of SID and investigate the causes. Generally,
the evaluation of false-negative cases for static analysis tools
is not as easy as a precision evaluation because it requires
a ground-truth set. To this end, we use SID to detect known
vulnerabilities in the Linux kernel to evaluate how many of them
are missed by SID. Specifically, like selecting recent patches
in §II-B, we chose patches from 100 recent vulnerabilities,
which violate at least one of our security rules.We used SID to
analyze the corresponding patches. It turns out that SID found
47 vulnerabilities out of the 100. Therefore, SID missed 53%
of vulnerabilities. After manually checking the false-negative
cases, we found the following main causes. The corresponding
solutions to reducing false negatives are discussed in §VII.

Under-constrained symbolic execution. SID uses under-
constraint symbolic execution in both patched code and
unpatched code to determine security impacts conservatively.
In some cases, even when the patched code can never violate

10

a security rule or the unpatched code must violate the security
rule, the conservative execution may not be able to prove it. The
conservative approach is mainly to reduce false positives, which,
however, introduces a significant number of false negatives.
This problem causes 17 cases.

Incomplete coverage for security and vulnerable operations.
Intuitively, the incompleteness of the coverage will result in
false negatives in confirming security impacts. In the current
implementation, we collected the most common operations
based on our statistical study (see §V-C). For example, for
out-of-bound read or write bugs, we only collected the vulner-
able operations such as array operations, common read and
write functions; however, vulnerable operations using custom
functions would be missed. This problem causes 31 cases. Also,
similar to the causes of false positives, there are 5 cases caused
by inaccurate static analysis.

C. The Trade-off between False Positive and False Negative

Safe

Unsafe

Safe

Unsafe

Patched Unpatched

Fig. 4: The safety-state transition diagram from unpatched version to
patched version.

Handling partial-fix patches. To distinguish the root differ-
ence between patches for general bugs and security-related bugs,
we introduce the concept of safety-state transition. First, we
say that the program is in an unsafe state if it violates at least
one security rule; we say the program is in a safe state if the
violations are eliminated. Figure 4 shows all the transition states.
Most commonly, a patch fixes a security bug if the unpatched
version is in the unsafe state, and the patched version is in the
safe state. In this case, we say that the patch blocks all the
security impacts of the bug. However, in some corner cases,
a patch only relieves a security bug, for which both patched
and unpatched versions are in the unsafe state, and the patched
version has fewer security-rule violations than the unpatched
version does. Thus, we call them partial-fix patches. In this
project, since SID is designed to cover the patches that correctly
and completely fix a security bug, it may miss security bugs
with partial-fix patches. Table VII summarizes how partial-fix
can happen for the covered types of bugs. In the course of our
evaluation, we only found two partial-fix cases—incompletely
initializing memory, which shows that partial-fix patches are
not common. However, in the future, it is possible to extend
SID to detect such partial-fix cases by analyzing the security
operations in a finger-grained manner (e.g., which bytes have
been initialized) and relaxing the symbolic rules (i.e., does not
require the block of all violations).

Relaxing symbolic rules. A unique strength of SID is using
the conservativeness of under-constrained symbolic execution to
precisely determine security impacts. Specifically, if the under-
constrained symbolic execution is unsolvable, it is truly unsolv-
able; however, if the under-constrained symbolic execution is
solvable, it can be a false positive due to missing constraints.

Bug types Partial fix on security operations

Out-of-bound access Incomplete bound check
Use-after-free/double-free N/A
Uninitialized use Incomplete initialize
Permission bypass Incomplete perm check

TABLE VII: Possible partial-fix patches.

Therefore, we design strict rules—the patch should block all
violations (against a security rule) in the unpatched version by
proving the opposite constraints (see §IV-B) unsolvable.

Readers may wonder whether we can relax the symbolic
rules—determining security impacts as long as some violations
have been blocked—to reduce false negatives of SID. A critical
issue with rule relaxing is that, with the relaxed rules, we cannot
construct the opposite constraints to prove the unsolvability.
This will prevent SID from benefiting from the conservativeness
of under-constrained symbolic execution because the detected
blocks of violations will likely be false positives due to missing
constraints, rendering the security-impact determination highly
imprecise.

D. Security Evaluation for Identified Security Bugs

Every patch identified by SID, besides the false positives
(3%), fixed at least one security impacts; therefore, we believe
that the corresponding bugs are security bugs. To further
validate that the identified security bugs are real vulnerabilities,
we conduct two evaluations: (1) requesting CVEs and (2)
analyzing reachability.

Vulnerability confirmation for CVE. Surprisingly, out of 227
security bugs found by SID, only 31 of them have been already
assigned with CVE numbers. The remaining 196 security bugs
were not reported and were improperly treated as non-security
bugs. To confirm vulnerabilities, we request CVEs for the
remaining security bugs in two phases. In the first phase, we
requested CVEs for 40 security bugs individually. Due to that
requesting CVE is a time-consuming process; in the second
phase, we requested CVEs in a single batch.

The 40 security bugs submitted in the first phase come
from two sets; the first set contains 21 bugs that are patched in
the Linux kernel but still unpatched in the Android kernel. We
believe that this set represents less-likely security bugs because
the Android team might have confirmed them as non-security
bugs thus did not patch them. The second set includes the
other 19 detected security bugs that are randomly selected
but cover different types of security impacts. For these 40
cases, which were submitted individually, we have received
responses for 37 of them. In particular, we have obtained 24
CVEs for 23 security bugs (one bug was assigned with two
CVE IDs), and 9 of these bugs are from the unpatched set
in Android. 14 security bugs will not be assigned with CVEs
due to non-technical or controversial reasons: (1) the security
bug is in pre-release versions (5 cases); (2) information-leak
(memory disclosure to userspace) bugs in obsolete kernel code 1

(5 cases); (3) patch commits do not mention security impacts
(4 cases). For the first reason, we believe that most code will

1Response: "CVE IDs are not required for information leak to userspace in
various obsolete kernel code from approximately 2013."

11

be released, and the corresponding security bugs will qualify
CVEs. For the second reason, we would disagree—memory
disclosures to userspace are security-critical because they break
ASLR [26, 29] and leak sensitive data; also, the involved code
still exists in the latest and released versions. The third reason
shows that manually confirming the security impacts of bugs
without commits mentioning security issues is hard.

Because maintainers would not assign CVEs for bugs in
the pre-release (i.e., release candidate (RC)) versions, in the
second phase, we filtered out 42 such bugs and reported 114
security bugs in a single batch. We still have not received
the responses yet because the review of the reports for these
bugs requires significant manual work for CVE maintainers. In
comparison, individual reports receive responses much more
timely. In summary, we totally reported 154 security bugs to
CVE maintainers. We have received 37 responses with 24
new CVEs assigned. This means that, including the previously
confirmed CVEs, 54 out of 227 identified bugs have been
assigned with CVEs. Note that none of the rejected cases is
due to misidentifying security impacts. Table XIII show the
details of the security bugs and CVE. These results indicate
that SID is effective in determining security bugs from massive
general bugs.

Reachability analysis for security bugs. Since a bug becomes
a vulnerability when it can be triggered and cause security
impacts, we also evaluate the reachability (from attacker-
controllable entry points) of the identified bugs. The identified
security bugs were detected through either fuzzers or other
techniques such as static analysis. Clearly, if a bug was found
by fuzzers such as Syzkaller [46], we can directly confirm its
reachability. In particular, by checking the git commits, which
would mention the corresponding fuzzers if a bug was found
through fuzzing, we found that 28 (12.3%) of identified security
bugs were found by fuzzers, thus are reachable from attackers.

The remaining 199 security bugs were mainly found through
static analysis; confirming their reachability from attacker-
controllable entry points has been a challenging and open
problem [20]. Therefore, in this evaluation, we focus on finding
the reachable call-chain between attacker-controllable functions
and the functions containing the vulnerable operations. To this
end, we first identified entry points—functions in the kernel
that can be arbitrarily called by attackers. Based on how the
kernel interacts with external entities, we empirically identify
the following entry points.

• System calls. They are the most commonly used interface
between user-space and kernel-space, which are also widely
targeted by kernel fuzzers.

• Driver-specific I/O-control handlers. These handler functions
are registered and can be called through the ioctl system
call. By setting specific parameters, attackers can control
the handlers. The previous work, DIFUZE [10], also fuzzes
these handlers to find bugs in the kernel drivers.

• Interrupt (IRQ) handlers in drivers. Malicious hardware can
invoke such handler functions by triggering the interrupt and
prepare their parameter; therefore, they are also controllable
to attackers. PeriScope [45] also fuzzes kernel drivers and
regards these IRQ handlers as entry points.

We first identify the 338 system calls in the Linux kernel
based on the system-call list [1]. Then, following the method of

DIFUZE [10], we identify a set of structures that can be used to
register ioctl handler by drivers, and based on these structures,
we find 603 ioctl handlers [11]. To identify IRQ handlers,
PeriScope [45] shows that drivers can register their own IRQ
using multiple types of APIs, and tasklest is one of the most
commonly used software interrupts (softirq). Therefore, based
on the declarations of tasklest and IRQ-related keywords in
drivers, we finally find 126 IRQ handlers.

The idea of the evaluation is to traverse the global call-graph
of the kernel to collect the shortest call-chain path between the
entry points and functions containing the vulnerable operations.
We employ Dijkstra’s Shortest Path (DSP) algorithm [16] to
find the paths. Given a bug, we say it is reachable from attacker-
controllable entry points if we find such paths. To minimize
false positives and false negatives, we employ the state-of-
the-art techniques—using struct types to match functions [28,
31, 62]—to precisely identify indirect-call targets. Table VIII
shows the number of bugs that are reachable from different
types of entry points. In particular, we found that 133 security
bugs are reachable from systems, and 154 are reachable from
the three classes of entry points.

Entry points Num of reachable bugs

Dynamically confirmed bugs (fuzzers) 28
System calls 133
I/O control handlers 148
Interrupt handlers 131
Total 154 (67.8%)

TABLE VIII: Number of bugs that can be reached from different
kinds of entry points.

E. Generality of SID’s Patch Model

Num of key components Percent

Three components 77%
Two or one component 11%
Other cases 12%

TABLE IX: The generality of SID’s patch model. It shows the
numbers of components the vulnerabilities have.

SID’s patch model includes three key components of patches:
security operation, vulnerable operation, and critical variables.
To evaluate the generality of the model, we analyzed the most
recent 100 vulnerabilities in the Linux kernel that were disclosed
in 2019. Table IX shows the statistical results of this evaluation.

We can find all of the three components in 77 vulnerabilities;
therefore, SID can support the security-impact determination
for them. Furthermore, 11 vulnerabilities only have one or two
of these key components. For example, pointer usage in an
incorrect order can introduce use-after-free vulnerabilities, and
the corresponding patches just change the pointer reference
order. In this case, the security operation is not modeled and thus
will be missed. In addition, 12 cases involve code removal as
the fix or multiple patches, which cannot be clearly represented
by SID’s current model. For example, there are five patches
that only delete some redundant code, such as deallocation
functions. Some vulnerabilities were fixed by more than one
patches or complex patches.

12

SID’s model is, in fact, conceptual and general—while
a vulnerability typically has vulnerable operations, the patch
performs security operations to prevent them, and both kinds of
operations often target variables. In the future, we can certainly
extend the model to support more cases. For example, even for
memory leaks where there is no explicit vulnerable operation
at all, we can artificially model “object pointer never being
released” as the vulnerable operation, which can be realized by
analyzing the operations against the pointer (critical variable).

F. New and Important Findings

Patching-time window for security and general bugs. In
order to show the importance of SID, we would like to know
how Linux maintainers treat security bugs and general bugs
differently. To this end, we measure and compare the patching
time window for them—the time from the submission/report of
a patch to the application of the patch. We tested 8,000 patches
for general bugs, 1,339 patches for vulnerabilities, and all the
security bugs that are found by SID but do not have CVE ID.
We use the cumulative distribution function (CDF) to show the
statistical patching-time window in Figure 5. We find that the
patching-time window for CVE-assigned vulnerabilities (5.8
days) is shorter than security bugs (8.6 days) found by SID.
This means that the maintainers have not treated these security
bugs as important as vulnerabilities.

We also find that the patching time window of security
bugs identified by SID is shorter than other general bugs. We
believe one reason is that the patches for these security bugs
have fewer code changes, and the bugs have clearer patterns,
which is also reported by Li et al. [27].

More statistical results are shown in Table X, from which
we can find that security patches still take a long time to be
applied. Nearly 10% of security bugs are patched more than
one month after they have been reported. This significant time
window gives attackers much time to craft critical exploits, not
to mention that the reported patches are visible to attackers.
Thus, an automated tool that can determine the security impacts
of bugs is demanded.

Type Average Median Maximum
(Days) (Days) (Days)

General patches 15.8 3 1240
Patches of security bugs 8.6 2 111
Patches of vulnerabilities 5.8 1 974

TABLE X: Statistics on patch-time window.

Delayed disclosure of security impacts of existing vulnera-
bilities. We found that the disclosure of the security impacts
of existing vulnerabilities is commonly delayed, which is also
known as hidden impact vulnerability [53]. To measure the
delaying, we define the delayed time as the time window
from the patch date to the CVE-release date. We collected
1,339 vulnerabilities in the Linux kernel from the CVE
database [13, 38] and analyzed the delayed time. The CDF
for the delayed time is shown in Figure 5. The results show
that only 23.9% of them are identified as vulnerabilities less
than two weeks (14 days) after they have been patched. The
other 75% are reported as vulnerabilities after two weeks. The
average and median delayed time period for these vulnerabilities

is 191 and 45 days. The longest case is more than 12 years,
which was identified as a security bug by SID and assigned
with a CVE (CVE-2007-6762) after we reported it.

Security bugs threatening derivative software. Many pro-
grams are derived from other open-sourced programs. For
example, the Android kernel is a modified version of the
Linux kernel, and the Android kernel is further customized
into thousands of versions [52] running on tens of thousand
device models [64]. This problem is known as Android
fragmentation [52, 64]. Manufactures are unable to fix all
bugs timely, due to a large number of derivative programs.
Instead, they prioritize security-critical ones and postpone or
even ignore non-security ones. To understand the severity of
the problem, we test more than 5K bug patches in the Android
kernel of version 4.14-p-release and perform two evaluations.

The first evaluation is to check how many security bugs
(identified by SID) remain unpatched in Android. Specifically,
we manually checked the security bugs found by SID in the
latest (as of the experiment) Android kernel release version,
Android-4.14-p-release, which was ported from the Linux kernel
4.14 on November 12, 2017 [48]. As such, patches applied
before the date in Linux will also be available in Android.
Therefore, we analyzed the security bugs found by SID that
were introduced before November 12, 2017, but patched in
Linux after the date. We found that 39 such security bugs were
reported after November 12, 2017, in the Linux kernel and were
not assigned with a CVE; 11 of them do not affect the Android
code anymore; thus, they are excluded. For the remaining 28
security bugs, we found that only seven are patched in the
Android kernel, and 21 (75%) remain unpatched. Details can
be found in appendix (Table XIII). These security bugs may
pose serious security risks to Android.

The second evaluation is to measure the bug-fixing time
windows of CVE-assigned bugs and non-security bugs in
Android. Specifically, non-CVE bugs are fixed with an average
of 44.6 days (30 days following Linux kernel patches), while
CVE-assigned bugs are fixed with an average of 27.8 days
(only 14 days following the Linux kernel patches). For security
bugs, because most of them are not identified as vulnerabilities,
thus they will be treated as general bugs and would not be fixed
in time. The average time window is 44.6 days. For instance,
Figure 6 is a missing bound check security bug in the Linux
kernel. After our report, this security bug has a CVE ID, CVE-
2019-15926, with CVSS score 9.4. This bug was introduced
from the Linux kernel 3.0 but still has not been patched in the
Android 4.14-p-release until the submission of this paper.

Multi-impacts per bug. The semantics of vulnerable opera-
tions often decides security impacts. Intuitively, when a critical
variable is used in multiple vulnerable operations, it may have
multiple security impacts. In particular, for the 227 security
bugs, SID actually found 243 security impacts, as shown in
Table XI. For example, some out-of-bound access cases are
also caused by uninitialized use when the uninitialized variable
is used as a size variable in memory access.

Characterizing bugs and vulnerabilities. In addition to
the security impacts, we also characterize other differences
between general bugs and security bugs. First, we analyzed
the differences in the number of changed lines in patches
for 1,350 randomly selected general bugs, the security bugs

13

200 0 200 400 600 800 1000 1200 1400 1600
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 30 60 90 120 150 180 210 240 270
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

General bugs
CVE vulnerabilities
Security bugs found by SID

(1) Patching-time window (days) (2) Security impacts delayed time (days) (3) Number of changed lines in different patches

0 10 20 30 40 50 60 70 80 90 100
30%

40%

50%

60%

70%

80%

90%

C
D

F

General bugs

CVE vulnerabilities

Security bugs found by SID

Fig. 5: Statistical findings. CDF: cumulative distribution function; (1) CDF for time windows from bug report date to bug fix date; (2) CDF for
time window from the patch date to the CVE release date; (3) CDF for the number of changed lines for different kind of bugs. In (2), about 1%
of vulnerabilities are assigned with a CVE before the bugs are actually patched.

1 /* CVE-2019-15926, CVSS 9.4
2 * drivers/net/wireless/ath/ath6kl/wmi.c */
3 static int ath6kl_wmi_pstream_timeout_event_rx(
4 struct wmi *wmi, u8 *datap,
5 int len) {
6 ...
7 ev = (struct wmi_pstream_timeout_event *) datap;
8 + if (ev->traffic_class >= WMM_NUM_AC) {
9 + ath6kl_err("invalid traffic class: %d\n",

10 + ev->traffic_class);
11 + return -EINVAL;
12 + }
13

14 ...
15 wmi->stream_exist_for_ac[ev->traffic_class] = 0;
16 ...
17 }

Fig. 6: An out-of-bound access vulnerability in Android 4.14

Security impacts # Security impacts #

Uninitialized use 85 Use-after-free/Double-free 67
Out-of-bound access 65 Permission bypass 13
NULL-pointer dereference 13

TABLE XI: Security impacts for the identified security bugs

found by SID, and 1,339 CVE-assigned vulnerabilities. The
statistical results are shown in Figure 5. We can find that
security bugs and vulnerabilities are highly similar in terms
of the number of changed lines in their patches—both have a
smaller number then general bugs patches have. The finding is
consistent with the results found by Li et al. [27]. Also, the
patches for vulnerabilities and security bugs tend to change
fewer files than patches for general bugs. Patches for general
bugs changed 3.0 files on average, which in contrast to 2.3
files for patches of vulnerabilities and security bugs found by
SID.

Another finding is that among the git commits for the
1,339 vulnerabilities, 814 (60.8%) of them did not mention
any security impacts such as use-after-free, double-free, etc.
This result implies that one cannot reliably determine the
security impacts solely based on the textual information in
patch commits.

VII. DISCUSSION

The generality of SID. SID can be extended to determine
the security impacts of patches for other well maintained open-
source programs such as Firefox, Chrome, and FreeBSD. Our
patch model is general, which can be used to describe the
security operations and vulnerable operations in a program-
agnostic manner. To extend SID to other programs, only the pre-
processing part requires new manual effort. For example, for out-
of-bound access vulnerabilities, for different target programs,
we need to collect functions for memory access and bound
checks.

The extensibility of SID. In our work, SID is only used to
support the common classes of vulnerabilities. However, other
classes of vulnerabilities can also be supported by specifying the
security rules for them—how these vulnerabilities violate the
security rules. In addition, the rules for constructing constraints
from security operations and security rules should also be
specified. Table XII shows that we can naturally extend SID to
support more classes of bugs by modeling the three components
of their patches. For example, numerical-error vulnerabilities
such as divide-by-zero can be supported. The security rule is
that the divisor cannot be zero. Correspondingly, the vulnerable
operation is division, and the security operation can be a zero-
check for the divisor. Similarly, NULL-pointer dereference
also fits SID’s model. The security rule is that a dereferenced
pointer cannot be NULL. Therefore, the vulnerable operation
is pointer dereferencing, and the security operations can be
a NULL check. After including these types, Sid can cover
at least 51% of vulnerabilities (13% more).In the future, we
would like to support more classes of vulnerabilities.

In addition, the current implementation of SID considers
only simple patching patterns for vulnerabilities because we
find that the average distance between a security operation and
a vulnerable operation is 6.6 lines of code, and the longest
distance is 65 lines of code. This result is consistent with the
finding of SPIDER [32]—94.4% of safe patches affect less than
20 lines of code. Therefore, the under-constrained symbolic
execution can handle most of them efficiently. In the future,
SID can also be extended to support complicated patterns.
For example, some patches use multiple security operations
together to fix a vulnerability. These cases can be described
using complex security rules and represented with multiple

14

Security bugs (by root cause) Security impact Security operation Vulnerable operation Critical Variable SR in PV or SR in UPV or
SO in UPV SO in PV

Missing release Memory leak Release operation Allocation operation Allocated pointer FLAGCV = 0 FLAGCV = 1

Missing NULL check NULL dereference NULL check Pointer dereference Checked pointer FLAGCV = 0 FLAGCV = 1

Missing zero check Divide by zero Zero check Use as divisor Divisor FLAGCV = 0 FLAGCV = 1

Missing/wrong locks/unlocks Race condition Lock/unlock Operations in critical section Lock variable FLAGCV = 0 FLAGCV = 1(UAF/DF and etc.)

TABLE XII: The key components of patches and constraints modeling for more types of bugs. SO = security operations; SR = security rules;
PV = patched version; UPV = unpatched version.

constraints.

Reducing false negatives. First, the conservativeness of
the under-constrained symbolic execution indeed introduces a
significant number of false negatives, because in the current
implementation, the constraints for the slice paths are collected
only from the security operation to the vulnerable operation.
Therefore, the constraints are under-constrained. As an improve-
ment, in the future, we can extend the constraint collection
beyond the security operation—backwardly collecting as many
constraints as possible from the security operation and adding
them to the final constraint set. This method could reduce at
most 17% of false negatives in our evaluation.

Second, the incompleteness of the security and vulnerable
operations sets also causes false negatives. To reduce them, we
can collect more custom functions for security and vulnerable
operations. Such functions can be modeled based on dynamic
analysis [63] and wrapper-function analysis [21, 62]. Covering
more security and vulnerable operations can reduce at most 31%
of false negatives. For example, if we model the lock/unlock
operations for use-after-free, we can additionally cover 25%
of use-after-free vulnerabilities in the evaluation. But to do
so, more manually analysis work on patches and engineering
efforts are needed. Therefore, we put these works in future
works.

VIII. RELATED WORK

Mining security-critical vulnerabilities from bugs. Wi-
jayasekara et al. [53] show the hidden impact vulnerabilities
that were first identified as non-security bugs and publicized
and later were identified as vulnerabilities due to exploits.
In addition, previous work [5, 15, 23, 50, 54, 65] has used
supervised and unsupervised learning techniques to classify the
vulnerabilities and general bugs based on the textual information
of the patches. Tyo [50] showed that the Naive Bayes and
Support Vector Machine classifiers always have the best
performance. However, such work cannot handle the patches
without descriptions or if they have incomplete/inaccurate
descriptions. Moreover, these works focused only on dif-
ferentiating vulnerabilities from general bugs, which cannot
determine the specific security impacts of the bugs or pinpoint
the vulnerable operations resulting in the security impacts.
Recent work, SPIDER [32], identifies fixes as security fixes as
long as they do not disrupt the intended functionalities. This
assumption does not hold for some patches, such as the ones
only improving code readability or replacing equivalent APIs.
In contrast to these papers, SID can precisely determine the
security impacts of a patched bug and provide details on the
vulnerable operations even when the commit description is not

available. Moreover, SID is not based on the assumptions used
by SPIDER.

Testing the exploitability of bugs. Several prior studies have
attempted to test the exploitability of a particular class of bugs.
Specifically, Lu et al. [30] showed how to exploit uninitialized-
use bugs using symbolic execution and fuzzing in the Linux
kernel. Xu et al. [58] presented a memory collision strategy
to exploit the use-after-free vulnerabilities in the Linux kernel.
You et al. [61] presented SemFuzz, which guides the automatic
generation of proof-of-concept exploits for vulnerabilities.
Thanassis et al. [4] proposed AEG, a symbolic execution–based
automatic exploit generation tool that can automatically exploit
memory-corruption bugs such as buffer overflow. Wu et al. [55]
presented FUZE, which can automatically exploit use-after-free
vulnerabilities in the Linux kernel. Unlike these studies, SID
does not focus on the exploitability of a specific class of
vulnerability. Instead, SID aims to automatically determine the
security impacts of a bug once it is triggered. Moreover, SID
is not limited to a specific vulnerability class.

Bug-severity assessment. Mell et al. [33] presented the
common vulnerability scoring system (CVSS), which is the
most widely used vulnerability scoring system. CVSS requires
manual scoring of the severity of vulnerabilities based on their
confidentiality, integrity, and availability. However, Munaiah
et al. [37] showed that CVSS is often biased in determining
the severity. For example, it does not treat code execution
and privilege escalation as important factors when analyzing
the severity of vulnerabilities. Most of the severity-analysis
techniques [9, 34, 40, 43] are based on bug reports, which also
cannot handle the bug patches without a description or if they
have incomplete descriptions.

Symbolic execution. Symbolic execution has been used for
decades. Cadar et al. [7] proposed a symbolic execution method
to generate inputs to trigger bugs in real code automatically.
Later, Cadar et al. developed KLEE [6], which is a widely-
used symbolic execution engine. Both of these tools need
the complete constraints in the program; thus, they can only
symbolically execute from the entry of a program. Such
symbolic execution does not scale well to large programs.
Under-constrained symbolic execution [17, 41], implemented
in UC-KLEE, lifts this limitation by treating symbolic values
coming from unexecuted parts of the code especially. This
approach makes symbolic execution much more flexible and
expands the possible applications. Because under-constrained
symbolic execution is unaware of properties of data established
by the unexecuted code, it can still produce false-positive
error reports that would not occur when executing a complete
program. Similar to UC-KLEE, SID also uses under-constrained
symbolic execution to execute from an arbitrary point in a

15

function symbolically. However, SID minimizes false positives
by combining the constraints from security rules and differential
analysis. Also, different from UC-KLEE, which detects bugs
introduced by new patches, SID determines the security impacts
of patches.

IX. CONCLUSION

Maintainers of large software programs are bombarded with
a large number of bug reports without a reliable description of
security impacts. With limited resources, maintainers have to
prioritize the patching for bugs with security impacts, which is
however challenging, and de-prioritizing a security-critical bug
will lead to critical security problems. This paper presented
SID, an automated approach to determining the security impacts
for a massive number of bug patches. The core of SID is the
symbolic rule comparison mechanism that employs differential,
under-constrained symbolic execution to precisely confirm
the security impacts of a bug. SID can further automatically
classify vulnerabilities based on their security impacts. We
have implemented SID and applied it to determine the security
impacts of Linux-kernel bugs. As a result, SID have found
227 security bugs from 54K valid commits patches in the
Linux kernel, and 21 of them remain unpatched in the latest
Android kernel (version 4.14), which may cause critical security
problems to Android devices. Many of the identified security
bugs have been assigned with a CVE ID and a high CVSS score.
The evaluation results show the precision and effectiveness of
SID in automatically determining security impacts.

X. ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful feedback. This research was supported in part
by the NSF awards CNS-1815621 and CNS-1931208. Any
opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] Linux syscall reference, 2019. https://syscalls.kernelgrok.com/.
[2] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an open bug repository.

In Proceedings of the 2005 OOPSLA workshop on Eclipse Technology
eXchange, ETX, pages 35–39, Oct. 2005.

[3] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage, G. Thomas,
and A. Kaseorg. Security impact ratings considered harmful. In
Proceedings of HotOS’09: 12th Workshop on Hot Topics in Operat-
ing Systems, May 2009. https://www.usenix.org/conference/hotos-xii/
security-impact-ratings-considered-harmful.

[4] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley. Automatic exploit generation. Communications of the
ACM, 57(2):74–84, 2014.

[5] D. Behl, S. Handa, and A. Arora. A bug mining tool to identify and
analyze security bugs using naive bayes and tf-idf. In Optimization,
Reliabilty, and Information Technology (ICROIT), 2014 International
Conference on, pages 294–299. IEEE, 2014.

[6] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI, volume 8, pages 209–224, 2008.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: automatically generating inputs of death. ACM Transactions on
Information and System Security (TISSEC), 12(2):10, 2008.

[8] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Marcus,
G. Bavota, and V. Ng. Detecting missing information in bug descriptions.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 396–407. ACM, 2017.

[9] K. Chaturvedi and V. Singh. Determining bug severity using machine
learning techniques. In 2012 CSI Sixth International Conference on
Software Engineering (CONSEG), pages 1–6. IEEE, 2012.

[10] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Difuze: Interface aware fuzzing for kernel drivers. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2123–2138. ACM, 2017.

[11] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna. Fuzzer for linux kernel drivers, 2019. https://github.com/
ucsb-seclab/difuze.

[12] M. Corporation. Common weakness enumeration (cwe), 2019. https:
//cwe.mitre.org/data/definitions/1000.html.

[13] M. Corporation. Common vulnerabilities and exposures, 2019. https:
//cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel.

[14] S. Counte. Mobile operating system market share worldwide, 2019.
http://gs.statcounter.com/os-market-share/mobile/worldwide.

[15] D. C. Das and M. R. Rahman. Security and performance bug reports
identification with class-imbalance sampling and feature selection. In
2018 Joint 7th International Conference on Informatics, Electronics &
Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision
& Pattern Recognition (icIVPR), pages 316–321. IEEE, 2018.

[16] E. W. Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[17] D. R. Engler and D. Dunbar. Under-constrained execution: making
automatic code destruction easy and scalable. In Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pages 1–4, July 2007.

[18] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained Control-Flow
Integrity for Kernel Software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 179–194. IEEE, 2016.

[19] M. Gegick, P. Rotella, and T. Xie. Identifying security bug reports via
text mining: An industrial case study. The 7th IEEE Working Conference
on Mining Software Repositories (MSR’10), 2010.

[20] A. Y. Gerasimov, L. V. Kruglov, M. Ermakov, and S. P. Vartanov. An
approach to reachability determination for static analysis defects with
the help of dynamic symbolic execution. Programming and Computer
Software, 44(6):467–475, 2018.

[21] R. Ghiya, D. Lavery, and D. Sehr. On the importance of points-to analysis
and other memory disambiguation methods for c programs. In ACM
SIGPLAN Notices, volume 36, pages 47–58. ACM, 2001.

[22] Google. Android security rewards program rules, 2019. https://www.
google.com/about/appsecurity/android-rewards/.

[23] K. Goseva-Popstojanova and J. Tyo. Identification of security related bug
reports via text mining using supervised and unsupervised classification.
In 2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pages 344–355. IEEE, 2018.

[24] C. Hall. Survey shows linux the top operating system for in-
ternet of things devices, 2018. https://www.itprotoday.com/iot/
survey-shows-linux-top-operating-system-internet-things-devices.

[25] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 34–43. ACM, 2007.

[26] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula:
Fortifying weakened aslr on android. In 2014 IEEE Symposium on
Security and Privacy, pages 424–439. IEEE, 2014.

[27] F. Li and V. Paxson. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2201–2215. ACM, 2017.

[28] K. Lu and H. Hu. Where does it go? refining indirect-call targets with
multi-layer type analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1867–
1881, 2019.

[29] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee. Aslr-guard:
Stopping address space leakage for code reuse attacks. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 280–291. ACM, 2015.

16

https://syscalls.kernelgrok.com/
https://www.usenix.org/conference/hotos-xii/security-impact-ratings-considered-harmful
https://www.usenix.org/conference/hotos-xii/security-impact-ratings-considered-harmful
https://github.com/ucsb-seclab/difuze
https://github.com/ucsb-seclab/difuze
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+kernel
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.google.com/about/appsecurity/android-rewards/
https://www.google.com/about/appsecurity/android-rewards/
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices

[30] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes.
Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying. In NDSS, 2017.

[31] K. Lu, A. Pakki, and Q. Wu. Detecting missing-check bugs via semantic-
and context-aware criticalness and constraints inferences. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1769–1786, Santa Clara,
CA, Aug. 2019. USENIX Association. ISBN 978-1-939133-06-9. URL
https://www.usenix.org/conference/usenixsecurity19/presentation/lu.

[32] A. Machiry, N. Redini, E. Cammellini, C. Kruegel, and G. Vigna. Spider:
Enabling fast patch propagation in related software repositories. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

[33] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring
system. IEEE Security & Privacy, 4(6):85–89, 2006.

[34] T. Menzies and A. Marcus. Automated severity assessment of software
defect reports. In 2008 IEEE International Conference on Software
Maintenance, pages 346–355. IEEE, 2008.

[35] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

[36] Mozilla. Bugzilla main page, 2019. https://bugzilla.mozilla.org/home.
[37] N. Munaiah and A. Meneely. Vulnerability severity scoring and bounties:

why the disconnect? In Proceedings of the 2nd International Workshop
on Software Analytics, pages 8–14. ACM, 2016.

[38] nluedtke. linux_kernel_cves, 2019. https://github.com/nluedtke/linux_
kernel_cves.

[39] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Limset-
tho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto. A dataset of high
impact bugs: Manually-classified issue reports. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pages 518–521.
IEEE, 2015.

[40] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi. Deep neural
network-based severity prediction of bug reports. IEEE Access, 7:46846–
46857, 2019.

[41] D. A. Ramos and D. Engler. Under-constrained symbolic execution:
Correctness checking for real code. In 24th USENIX Security Symposium
(USENIX Security 15), pages 49–64, 2015.

[42] M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive: Testing
drivers without devices. In 10th USENIX Symposium on Operating
Systems Design and Implementation, (OSDI), pages 279–292, Oct. 2012.

[43] N. K. S. Roy and B. Rossi. Towards an improvement of bug severity
classification. In 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 269–276. IEEE, 2014.

[44] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz. kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In 26th USENIX
Security Symposium (USENIX Security 17), pages 167–182, 2017.

[45] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna,
C. Kruegel, J.-P. Seifert, and M. Franz. Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In NDSS, 2019.

[46] Thgarnie. Syzkaller, 2019. https://github.com/google/syzkaller.
[47] Y. Tian, N. Ali, D. Lo, and A. E. Hassan. On the unreliability of bug

severity data. Empirical Software Engineering, 21(6):2298–2323, 2016.
[48] L. Torvalds. Linux kernel 4.14, 2017. https://git.kernel.org/pub/scm/

linux/kernel/git/torvalds/linux.git/tag/?h=v4.14.
[49] L. Torvalds. Linux kernel source tree, 2019. https://git.kernel.org/pub/

scm/linux/kernel/git/torvalds/linux.git/.
[50] J. P. Tyo. Empirical analysis and automated classification of security bug

reports. 2016.
[51] W. Wang, K. Lu, and P.-C. Yew. Check it again: Detecting lacking-recheck

bugs in os kernels. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 1899–1913. ACM,
2018.

[52] L. Wei, Y. Liu, and S.-C. Cheung. Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pages 226–237, 2016. ISBN
978-1-4503-3845-5.

[53] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen. Mining
bug databases for unidentified software vulnerabilities. In 2012 5th
International Conference on Human System Interactions, pages 89–96.
IEEE, 2012.

[54] D. Wijayasekara, M. Manic, and M. McQueen. Vulnerability identification
and classification via text mining bug databases. In IECON 2014-40th
Annual Conference of the IEEE Industrial Electronics Society, pages
3612–3618. IEEE, 2014.

[55] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou. {FUZE}: Towards
facilitating exploit generation for kernel use-after-free vulnerabilities. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
781–797, 2018.

[56] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, pages
359–368. IEEE, 2009.

[57] M. Xu, C. Qian, K. Lu, M. Backes, and T. Kim. Precise and Scalable
Detection of Double-Fetch Bugs in OS Kernels. In Proceedings of the
39th IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2018.

[58] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu. From collision
to exploitation: Unleashing use-after-free vulnerabilities in linux kernel.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 414–425. ACM, 2015.

[59] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim. Fuzzing file
systems via two-dimensional input space exploration. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, May 2019.

[60] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. R. Engler. Automatically
generating malicious disks using symbolic execution. In 2006 IEEE
Symposium on Security and Privacy (S&P 2006), pages 243–257, May
2006.

[61] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang.
Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2139–2154. ACM, 2017.

[62] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang. Pex: a
permission check analysis framework for linux kernel. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pages 1205–1220, 2019.

[63] Z. Zhang, Y. Wang, and Z. Fan. Similarity analysis between scale model
and prototype of large vibrating screen. Shock and Vibration, 2015, 2015.

[64] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang. The peril of
fragmentation: Security hazards in android device driver customizations.
In Proceedings of the 2014 IEEE Symposium on Security and Privacy,
SP ’14, pages 409–423, 2014. ISBN 978-1-4799-4686-0.

[65] Y. Zhou and A. Sharma. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 914–919. ACM,
2017.

APPENDIX

17

https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://bugzilla.mozilla.org/home
https://github.com/nluedtke/linux_kernel_cves
https://github.com/nluedtke/linux_kernel_cves
https://github.com/google/syzkaller
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tag/?h=v4.14
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tag/?h=v4.14
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

Git commit BT SI ST CVSS ET Git commit BT SI ST CVSS ET Git commit BT SI ST CVSS ET

bf703c3f19934 MBC OBA N f4351a199cc12 MBC OBA R/U 7.2 SII 3af54c9bd9e6f MI UU N 1.9 SC
74415a36767d9 MBC OBA N d7ac3c6ef5d8c MBC OBA R/U 4.7 SII 97e69aa62f8b5 MI UU N 1.9 IO
9ed87fd34c97a MBC OBA N SII 04f25edb48c44 MBC OBA R/U 7.2 SII c4c896e1471ae MI UU N 1.9
494264379d186 MBC OBA N SII 5d6751eaff672 MBC OBA R/U 9.4 SII 8d03e971cf403 MI UU N 1.9
3d0ccd021b23c MBC OBA N de591dacf3034 MI UU N SII 792039c73cf17 MI UU N 1.9
ec3cbb9ce241d MBC OBA R 325fb5b4d2603 MI UU N SII/F 9344a972961d1 MI UU N 1.9
82033bc52abeb MBC OBA N SII 2fc2111c27294 MI UU R/D IO e862f1a9b7df4 MI UU N 1.9
b56fa1ed09615 MBC OBA N SII ed77ed6112f2d MI UU R/D 1f86840f89771 MI UU N 1.9 SII
62c8ba7c58e41 MBC OBA N IO ce384d91cd7a4 MI UU R/D IO c88e739b1fad6 MI UU N 4.3
5d60122b7e30f MBC OBA R SII 1a8b7a67224eb MI UU R/D SII 96b340406724d MI UU N 1.7
a9ae4692eda4b MBC OBA R SII b5f15ac4f89f8 MI UU R/D SII 8e3fbf870481e MI UU N 1.9
b9f62ffe05e40 MBC OBA R SII cccbe5ef85284 MI UU R/D SII b6878d9e03043 MI UU N 2.1 IO
d3c2155ce5889 MBC OBA R SII eca67aaeebd6e MI UU R/D IO eda98796aff0d MI UU N 1.9
12f4543f5d681 MBC OBA R SII a0c5a3944ce12 MI UU R/D 681fef8380eb8 MI UU N 2.1 IO
9a07826f99034 MBC OBA R SII 5b919f833d9d6 MI UU R/D 342ffc26693b5 MI UU R 2.1 IO
e1718d97aa88e MBC OBA R SII/F 938abd8449c27 MI UU R/D 0625b4ba1a5d4 MI UU R/U 2.1 SII
49521b13cbc02 MBC OBA R SII 144ce879b057c MI UU N 3b7d2b319db0b MN DF N SII
ef6ff8f47263b MBC OBA R SII 99b0d365e5ade MI UU N SII 1cfafab965198 MN DF R SII
f716abd55d1e1 MBC OBA R SII 9561f7faa45cb MI UU R/D IO 266e8ae37daa0 MN DF R
8986a11978373 MBC OBA R SII 21dba24481f70 MI UU R/D SII f5c4441cd8012 MN DF R SII
f658f17b5e0e3 MBC OBA R SII e7332691de2f9 MI UU R/D 1c963bec3534b MN DF N SII
952e5daa2565f MBC OBA U/R/D 02745f63443c0 MI UU R/D 1eb8f7a7da6d3 MN DF R SII
8513027a73c2f MBC OBA N 47966e9779528 MI UU R/D IO 1adb2e2b5f850 MN DF R
3a63e44420932 MBC OBA R/D SII 5ffedc6ed3d06 MI UU R/D f69ae770e74df MN DF N SII
b4810773754fe MBC OBA R/D 5dbd5068430b8 MI UU R eb1716af88737 MN DF N
ac57245215696 MBC OBA R/D SII 282c4c0ecce9b MI UU R/D IO c654ecbbfefbe MN DF R SII
6e893ca25e9ea MBC OBA R/D SII dc43376c26cef MI UU R/D 6dd93e9e5eb19 MN DF R SII
1e7eb89ba936f MBC OBA N SII b08e1ed9cfcf7 MI UU R/D SII 1e7bac1ef754b MN DF R SII
5270041d342de MBC OBA N SII b09c74ae1263e MI UU R/D SII 6cae6d3189ef3 MN DF R
32fb5f06dbb6c MBC OBA N SII 6ea437a3639b1 MI UU R/D SII b1214e4757b7d MN DF R SII
42d8644bd77dd MBC OBA, R SII d14df339c72b6 MI UU R/D 32b8544296b94 MN DF R F

NPD bffbbc0a2ccb9 MI UU R/D IO 7d78874273463 MN DF R SII
a0a74e45057cc MBC OBA, N SII 3ca9e5d36afb5 MI UU R/D IO c1b03ab5e8867 MN DF R SII

NPD ee7ff5fed2571 MI UU R/D SII d7426c69a1942 MN DF R SII/F
8dd2c9e3128a5 MBC OBA, N c9889803e3ba6 MI UU R/D SII b3b51417d0af6 MN DF R

NPD 7e8631e8b9d4e MI UU R/D SII f683c80ca68e0 MN DF R SII/F
518ff04fd8429 MBC OBA, N SII a5f6fc28d6e6c MI UU R/D 7dc4a6b5ca942 MN DF R SII

NPD 81907478c4311 MI UU R/D SII 23418dc131464 MN DF R/U/D
bb1553c800227 MBC OBA, N SII a44b0f5edfc63 MI UU R/D 7fafcfdf6377b MN DF R SII

NPD 5899f0478528b MI UU R/D SII ef2a7cf1d8831 MN DF R/U SII/F
55e8dba1acc2e MBC OBA, R 12b055662ac62 MI UU R/D SII dc035d4e934e5 MN DF R SII

NPD 79b568b9d0c7c MI UU R/D SII 4d45e21867bee MN UAF N SII
60ad768933ec1 MBC OBA, N SII aee177ac5a422 MI UU R/D SII f3429545d03a5 MN UAF N

NPD 62d494ca27735 MI UU R/D SII e04ca626baee6 MN UAF N
0b1d250afb8eb MBC OBA, N SII ab73ef46398e2 MI UU R/D SII e3e14de50dff8 MN UAF N

NPD 0b857b44b5e44 MI UU N SII 3fc98b1ac0366 MN UAF N SII
eef08e5350618 MBC OBA, N SII 9cd70e80f7f0d MI UU R/D 8f68ed9728193 MN UAF N

NPD 7307616245bab MI UU N 6cf9e995f91e5 MN UAF N SII
221be106d75c1 MBC OBA, R/U SII 02a9079c66341 MI UU R/D ba54238552625 MN UAF R SII/F

NPD d69bb92e402ff MI UU R/D IO 715252d419129 MN UAF N SII
ef4b4856593fc MBC OBA, R SII 0f4bbb233743b MI UU R/D IO ece1d77ed73b3 MN UAF N SII

NPD 5b0907407e7f2 MI UU R/D SII f276795627045 MN UAF R SII
2a2f11c227bdf MBC OBA R 7.5 SII e15882b6c6caf MI UU R/D SII/F 0d012b9866249 MN UAF R
0031c41be5c52 MBC OBA R 7.5 SII 72ccc471e13b8 MI UU R/D SII/F e8243f32f2550 MN UAF R SII
0926f91083f34 MBC OBA R 7.5 SII b51456a6096eb MI UU R/D fc09149df6e20 MN UAF R
12f09ccb46127 MBC OBA R 7.5 f7a6cb7b38c68 MI UU R/D 29322d0db98e5 MN UAF R
2da424b0773ce MBC OBA R 7.5 SII/F 6ce14f6416c84 MI UU R/D SII/F 400ffaa2acd72 MN UAF R SII
43622021d2e2b MBC OBA N 6.2 SII/F 4c5009c5256d0 MI UU R/D SII 44aa91ab2bb86 MN UAF R SII/F
78214e81a1bf4 MBC OBA N 4.7 SII/F df7e40425813c MI UU R/U a723bab3d7529 MN UAF R SII
41df7f6d43723 MBC OBA N 4.7 F d0ea2b1250054 MI UU R/U SII/F c7de572630762 MN UAF R SII
0fb6bd06e0679 MBC OBA N 4.7 SII/F 2d93913e22013 MI UU R/D fa6114d4bde70 MN UAF R SII
297502abb32e2 MBC OBA N 5.4 SII/F 5540fbf438458 MI UU R/U a7a7aeefbca29 MN UAF R IO/F

NPD 40f7090bb1b4e MI UU R/U c5540a0195ec6 MN UAF R
1fa2337a315a2 MBC OBA R 7.5 SII 81114baa835b5 MI UU R/U SII 8667f515952fe MN UAF R SII
9d47964bfd471 MBC OBA R 4.6 58796e67d5d52 MI UU R/U 741b8b832a574 MN UAF R
193e87143c290 MBC OBA R 7.5 SII 6d084ac27ab4b MI UU R/U SII 031e5896dfdc2 MN UAF R
780e982905bef MBC OBA R 4.6 e4818d615b58f MI UU N SII 3587cb87cc44c MN UAF R
b550a32e60a49 MBC OBA N 7.8 e55449e71aade MI UU N F 87fc030231b11 MN UAF R SII

NPD 84ce4d0f9f55b MI UU N SII 5bfd37b4de5c9 MN UAF R SII/F
dad5ab0db8dea MBC OBA N 7.2 SII 354d0fab649d4 MI UU R/U SII 6818caa4cdc95 MN UAF N SII/F

NPD 982f7c2b2e6a2 MI UU N 1.9 SC 073931017b49d MPC PE N 3.6 SII
db7683d7deb25 MN UAF R abd39c6ded9db MN UAF R/U 4.9 SII 497de07d89c14 MPC PE N 3.6 F
6d6340672ba3a MN UAF R SII/F 4397f04575c44 MN DF R/U 7.2 SII bfc81a8bc18e3 MBC OBA N 7.2 SII/F
25524288631fc MN UAF R d024206133ce2 MPC PE R 0c319d3a144d4 MBC OBA R 7.5 SII
e9777ad4399c2 MN UAF R/U/D d2c2b11cfa134 MPC PE R 89c6efa61f570 MBC OBA R 4.6 SII/F
11e40f5c57762 MN UAF R/U SII/F ed82571b1a14a MPC PE R 6acb47d1a318e MBC OBA R 4.6 SII
ae6ccb0f8153f MN UAF R SII f2b20f6ee8423 MPC PE R/D 4da62fc70d7cb I UU, R/D
c278c253f3d99 MN UAF R 4.4 SII/F e3a2b93dddad3 MPC PE R SII PE,
36e4ad0316c01 MN UAF R 6.1 SII 03ce7b1d23498 MPC PE R/U SII OBA
c9fbd7bbc23db MN UAF R/U 4.6 SII 41bdc78544b8a MPC PE N 2.1 SII 49c37c0334a9b I UU N 4.9
54648cf1ec2d7 MN UAF R/U 4.6 c0ca3d70e8d3c MPC PE N 4.9 fd02db9de73fa I UU N 1.9 IO

TABLE XIII: List of security bugs detected by SID. BT: bug type; SI: security impact; ET: entry point types; MBC: missing/wrong bound
check; OBA: out-of-bound access; MI: missing initialization; NPD: NULL-pointer dereference; UU: uninitialized use; MN: missing nullification;
MPC: missing permission check; DF: double-free; UAF: use-after-free; PE: permission bypass; U: unpatched bug in Android 4.14-p; R: requested
CVE ID; D: CVE request declined by CVE maintainers; N: not request CVE ID; SC: system-call; IRQ: IRQ handlers; IO: I/O control handlers;
SII: system-call & I/O control handler & IRQ handlers; F: confirmed dynamically (by Fuzzer); CVSS: common vulnerability scoring system.

18

	Introduction
	Background
	General Bugs, Security Bugs, and Vulnerabilities
	Common Security Bugs and Impacts
	Patch Model and Components
	Problem Scope and Assumptions
	Security Rules

	Overview of Sid
	The Approach of Sid
	The Workflow of Sid

	Design of Sid
	Static Analysis for Dissecting Patches
	Symbolic Rule Comparison
	Constructing and Collecting Constraints
	Solvability for each slice
	Comparison against symbolic rules

	Implementation
	Preparing Analysis Environment
	Identifying Security Operations
	Identifying vulnerable operation
	Mapping Operations in Patched and Unpatched Versions
	The Under-Constrained Symbolic-Execution Engine

	Evaluation
	False Positives of Sid
	False Negatives of Sid
	The Trade-off between False Positive and False Negative
	Security Evaluation for Identified Security Bugs
	Generality of Sid's Patch Model
	New and Important Findings

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix

